2006 DOE Hydrogen Program Review

MEA & Stack Durability for PEM Fuel Cells

3M/DOE Cooperative Agreement No. DE-FC36-03GO13098

Project ID # FC8

Mike Hicks 3M Company May 16, 2006

Overview

Timeline

- 9/1/2003 6/30/2007*
- 70% complete
- * Revised end date subject to DOE approval

Budget

- Total \$10.1 M
 - DOE \$8.08 M
 - Contractor \$2.02 M
- Funding received in FY05: \$2.43 M
- Funding for FY06: \$2.60 M

Barriers & Targets

A. Durability: 40k hrs

Team Members

- Plug Power
- Case Western Reserve University
- University of Miami

Consultant

Iowa State University

Objectives

Develop a pathway/technology for stationary PEM fuel cell systems for enabling DOE's 2010 objective of 40,000 hour system lifetime to be met

Goal: Develop an MEA with enhanced durability

- Manufacturable in a high volume process
- Capable of meeting market required targets for lifetime and cost
- Optimized for field ready systems
- 2000 hour system demonstration

Focus to Date

- MEA characterization and diagnostics
- MEA component development
- MEA degradation mechanisms
- MEA nonuniformity studies
- Hydrogen peroxide model
- Defining system operating window
- MEA and component accelerated tests
- MEA lifetime analysis

Approach

To develop an MEA with enhanced durability

- Utilize proprietary 3M Ionomer
 - Improved stability over baseline ionomer
- Utilize ex-situ accelerated testing to age MEA components
 - Relate changes in component physical properties to changes in MEA performance
 - Focus component development strategy
- Optimize stack and/or MEA structure based upon modeling and experimentation
- Utilize lifetime statistical methodology to predict MEA lifetime under 'normal' conditions from accelerated MEA test data

Accomplishments

GDL Characterization

Developed new test equipment to measure capillary pressure in GDLs

Membrane

- Completed investigation of reinforced membranes reinforcement may not be necessary for membrane durability
- Identified membrane failure mode and implemented solution to mitigate it
- Ongoing monitoring of membrane properties in accelerated tests

Membrane Degradation Mechanism

- Analyzed experimental and literature data more than just end group degradation
- Utilized ionomer model compounds to identify likely 'points of attack' and provide insight into ionomer degradation mechanism
- Developed initial hydrogen peroxide model to study peroxide in operating fuel cell

MEA Nonuniformity Studies

- Completed 121-channel segmented cell and investigated the effects of flow rate, load setting and GDL type; determined high gas stoichiometry yields current uniformity
- Utilized theoretical 3D fuel cell model to investigate effects of catalyst, membrane and GDL nonuniformity; determined that electrode defects result in highly, nonuniform current distribution

System Test

Initiated Saratoga system test with a preliminary, durable MEA design

MEA Lifetime Modeling

- Demonstrated that load profile affects MEA durability
- Developed initial lifetime prediction model to estimate MEA lifetime relative to DOE's 2010 stationary system goals
- Related initial fluoride ion to lifetime method to increase sample throughput

GDL Characterization – Capillary Pressure

Background

- Measured GDL permeability in humid and dry air
- Humid air yields lower gas permeability
 - Pores fill with water

Problem

- Need technique to characterize water transport in GDL pores
- There are no available instruments for measuring capillary pressures for hydrophobic porous media

Solution

- Design your own instrument
- CWRU has designed, machined and assembled the sample holders, load cell and strain sensor
- CWRU collaborated with Porous Materials Inc, Ithaca, NY to fabricate the instrument
- PMI will integrate the syringe pump, the press and automation

- Developed an instrument for measuring Capillary Forces in hydrophobic GDLs
- New method to characterize GDLs

Reinforced Membrane Activities

Membrane Stress Model

Hypothesis - Need reinforcing member to carry stress to eliminate mechanical failure or reduce mechanical failure rate

RH Cycle Test to Evaluate Hypothesis

Test Conditions:

80°C

Cycle equally between 0 and 150% RH

MEA (electrode and GDL) made with:	Time to failure (hours)	
DuPont™ Nafion® (NR-111)¹	260 – 330	
Ion Power™ Nafion® (N111-IP)¹	1330 +	
Gore™ Primea®1	400 – 470	
3M Cast Nafion® (1000 EW)	1200 +	

Evaluation of Various Reinforcing Members

- Neat membrane most durable
- No relationship between mechanical props and durability
 - Tensile test <u>does not</u> predict mechanical durability
 - Tear resistance <u>does not</u> predict mechanical durability
 - Less shrinking <u>does not</u> correlate to more mechanical durability
- What is the benefit of reinforcement?

^{1.} Gittleman et al, Fall AIChE Meeting, October 2005.

Mitigation of Membrane Edge Failure in Modules

Problem

 In module testing, observe infant mortality of MEAs due to edge failure at the membrane – catalyst interface

Solution

 Developed edge protection component for MEA

- Identified MEA failure mode
- Implemented a solution to significantly reduce infant mortality failure rate

3M Ionomer Membrane Properties vs Decay

Membrane Aging Procedure

Membrane Decay Mechanism Via Model Compounds

'Conventional Wisdom':

- H₂O₂ generated during fuel cell operation
- HO· or other radicals are attacking species
- -COOH end group unzipping primary route

Investigate alternative degradation mechanism(s) via model compounds

- Utilize analytical capabilities
- Better isolation of effect from different reactive sites
- Age MCs via Fenton's test or UV light (200 2400 nm @ 100W)

Model Compounds Relative Degradation Rates

 $MC3 > MC1 \approx MC2 > MC4 > MC7 & MC8$

- COOH containing MCs exhibit low stability
- Comparison of MC3 & MC4
 - Is it really a reactivity effect or solubility effect
- Is there a change in reactivity hydrolysis products?
 - Hydrolysis observed (by NMR) for MC1 & MC2
 - Need to evaluate MC7 & MC8 for hydrolysis

Identified MC1 & MC2 Reaction Products

$$F_3C$$
 OH F_3C C C C C

MC3 Isomer Degradation

- Same degradation rate
- Decarboxylation is rate determining step

Membrane Decay Mechanism - Hydrogen Peroxide Model

Objective

To define simple model to study peroxide behavior in an MEA

Equations:

$$\frac{d}{dt} \Big(C_{H_2O_2} \Big) = Rate \ of \ production \left(electrochemical + Chemical \ recombination \right) \\ + Rate \ of \ consumption \left(\begin{array}{c} Ionomer \ degradation + catalytic \ disproportionation \\ + electrochemical \ reduction \\ \end{array} \right) \\ + Transport \ through \ the \ electrode \left(Diffusion + Convection \right)$$

Experiments to Determine Input Parameters

- 1. Rate of Peroxide Production
- 2. Rate of Peroxide Disproportionation
 - Model provides insight into hydrogen peroxide distribution in an operating fuel cell and the degradation of ionomer by hydrogen peroxide

Model Output

Peroxide Concentration Profile as f(L)

MEA Nonuniformity Studies

Motivation - MEA Durability

Is MEA durability a function of current distribution/uniformity?

V. Gurau, H. Liu and S. Kakac, "A Two Dimensional Non-Isothermal Mathematical Model for Proton Exchange Membrane Fuel Cells," *AIChE Journal*, Vol. **44** (11), pp. 2410 – 2422, 1998

Approach

- Measure experimentally segmented cell
- Theoretical modeling

Segmented Cell

- Cell design validated
- Design fuel cell systems to operate at high stoichiometry for uniformity
- Recently completed 121 channel load

MEA Nonuniformity Studies

Variables Investigated

- Ionic Conductivity
- Catalyst Loading
- GDL Porosity
- Electrode Thickness
- Membrane Thickness
- GDL Thickness

 Surface defects resulted in highly nonuniform current distribution

Saratoga System Test – First Durable MEA Testing

Objective – Investigate possible interaction between system design and durable MEA design

- No negative MEA System interaction
- Program approach validated

Statistical MEA Lifetime Predictions from Accelerated Test Data

Model Assumes

- Weibull distribution
- Arrhenius for temp
- Humidity model for RH
- Class model load profiles

MEA Designs

Comparison of

- Lifetime probability distribution
- Reasonable predictive values
- No OCV load cycle offers ~ 13X lifetime improvement
- New MEAs with 3M ionomer ~ 4x more durable

Fluoride Ion Mapping of Accelerated Test Data

- Near-OCV Load Cycle

 Time
- Pathway towards ~ 20,000 hour MEA lifetime with 3M PEM MEAs under accelerated, near-OCV load cycle test conditions
- Means to increase sample throughput

Future Work – To the End of the Project

MEA & Stack Development & Testing

- MEA Component optimization & integration 3M
- Saratoga stack tests Plug Power
- Complete MEA evaluation in modules/single cells Plug Power
- Select 'Final' stack and MEA design and test Plug Power/3M

MEA Degradation Studies

- Peroxide model CASE
 - Incorporate realistic kinetic and transport parameters
- Model compounds CASE
 - Determine degradation kinetic constants
- MEA nonuniformity studies 3M/Plug/University of Miami
 - Determine operating conditions/MEA designs that yield current distribution uniformity
- Post mortem analysis CASE/Plug Power
- Mechanical properties-morphology relationship CASE

MEA Statistical Lifetime Predictions

MEA lifetime modeling – 3M/Plug Power

Project Summary

Relevance: Developing MEA and system technologies to meet DOE's year 2010

stationary durability objective of 40,000 hour system lifetime. Providing

insight to MEA degradation mechanisms.

Approach: Two phase approach (1) optimize MEAs and components for durability

and (2) optimize system operating conditions to minimize performance

decay.

Progress: Demonstrated pathway towards 20,000 hour MEA lifetime with 3M

PEM MEAs under accelerated 'near-OCV' load cycle test conditions.

Initiated durable MEA-stack system tests.

	FY '05	FY '06	DOE 2010 Goal (hrs)
Accelerated Lifetime Predictions (hrs)	16,000	> 20,000	40,000

Technology Transfer/Collaborations: Active partner with CWRU, Plug Power and the University of Miami. Presented 9 presentations and 2 papers on work related to this project in last 12 months.

Future Work: Complete studies on MEA degradation mechanism. Select 'final' MEA

and stack design and test system for 2,000 hours.

Publications and Presentations

- M. Yandrasits, "Mechanical property measurements of PFSA membranes at elevated temperatures and humidities," 2nd International Conference on Polymer Batteries and Fuel Cells, Las Vegas, NV, June 2005.
- D. Stevens, M. Hicks, G. Haugen, J. Dahn, "Ex situ and in situ stability studies of PEMFC catalysts: Effect of carbon type and humidification on degradation of the carbon," *J. Electrochem. Soc.*, 152 (12), A2309 (2005).
- D. Schiraldi and C. Zhou, "Chemical durability studies of PFSA polymers and model compounds under mimic fuel cell membrane conditions," 230th ACS Meeting, Washington, D.C., August 2005.
- M. Hicks, D. Pierpont, P. Turner, T. Watschke, M. Yandrasits, "Component Accelerated Testing and MEA Lifetime Modeling," 2005 Fuel Cell Testing Workshop, Vancouver, BC, September 2005.
- J. Dahn, D. Stevens, A. Bonakdarpour, E. Easton, M. Hicks, G. Haugen, R. Atanasoski, M. Debe, "Development of Durable and High-Performance Electrocatalysts and Electrocatalyst Support Material," 208th Meeting of The Electrochemical Society, Los Angeles, CA, October 2005.
- D. Pierpont, M. Hicks, P. Turner, T. Watschke, "Accelerated Testing and Lifetime Modeling for the Development of Durable Fuel Cell MEAs," 208th Meeting of The Electrochemical Society, Los Angeles, CA, October 2005 (presentation and paper).
- M. Hicks, K. Kropp, A. Schmoeckel, R. Atanasoski, "Current Distribution Along a Quad-Serpentine Flow Field: GDL Evaluation," 208th Meeting of The Electrochemical Society, Los Angeles, CA, October 2005 (presentation and paper).
- G. Haugen, D. Stevens, M. Hicks, J. Dahn, "Ex-situ and In-situ Stability Studies of PEM Fuel Cell Catalysts: the effect of carbon type and humidification on the degradation of carbon supported catalysts," 2005 Fuel Cell Seminar, Palm Springs, CA, November 2005.
- D. Pierpont, M. Hicks, P. Turner, T. Watschke, "New Accelerated Testing and Lifetime Modeling Methods Promise Development of more Durable MEAs," 2005 Fuel Cell Seminar, Palm Springs, CA, November 2005.
- M. Hicks, R. Atanasoski, "3M MEA Durability under Accelerated Testing," 2005 Fuel Cell Durability, Washington, DC, December 2005.
- Z. Qi, Q. Guo, B. Du, H. Tang, M. Ramani, C. Smith, Z. Zhou, E. Jerabek, B. Pomeroy, J. Elter, "Fuel Cell Durability for Stationary Applications - From Single Cells to Systems," 2005 Fuel Cell Durability, Washington, DC, December 2005.

Response to 2005 Reviewer's Comments

- Need to evaluate catalyst degradation; how does catalyst degradation affect overall MEA durability?
 - Reported results of 'commercial' Pt/C catalyst durability and degradation at 2004
 HFCIT Review
 - Project not focused on development of Pt/C catalyst; separate 3M/DOE project focused on catalyst durability (3M NSTF catalyst)
- Need additional characterization of membrane physical properties and effect of aging on these properties
 - Initiated task on measuring membrane mechanical properties & morphology as a function of aging
- Need to relate effect of component improvements to overall MEA improvements.
 What component improvement added most value to MEA lifetime?
 - Integration of components is critical in terms of obtaining good MEA durability
 - Considering possible patent applications
- Need to work on reinforced membranes.
 - Have evaluated reinforced membranes; results to be presented in the future
 - Development out of scope of project some work done at expense to 3M
- Better description of lifetime model
 - Using std lifetime statistical analysis techniques; see W.Q. Meeker and L.A.
 Escobar, Statistical Methods for Reliability Data, John Wiley and Sons, Inc. (1998)
- Need to address other targets (cost/performance) in concert with durability
 - Reported performance at the 2005 DOE Hydrogen Program Review
 - Cost not a primary objective; it is used as a metric when deciding options
- Too much emphasis on fluoride ion release.
 - Disagree
 - Very strong relationship between fluoride release and MEA lifetime

Critical Assumptions and Issues

- Validation of lifetime model analysis method
 - Testing baseline samples at 'normal' test conditions
 - Comparison to field test data
- Increasing sample throughput of improved durability MEAs
 - New, durable MEAs last too long
 - Use initial fluoride ion release as metric (reduces test time)
 - Plug Power test equipment online (adds more test equipment)
- Understanding role of peroxide
 - Initial peroxide lifetime model established
- Demonstrate benefit of new, more durable MEAs
 - Start lifetime accelerated tests of new MEAs
 - Apply lifetime model to new MEAs